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Three algebraic methods of evaluating integrals of the form, 

where H(x) is the unit Heaviside function and P(x”) is a polynomial in the N integra- 
tion variables are described. Emphasis is placed on computer implementation of the 
integration techniques. 

I. INTRODUCTION 

In recent investigations of the statistical thermodynamics of rigid disk and sphere 
solids [l], we found it necessary to evaluate configuration space integrals of the 
form 

where H(x) is the unit Heaviside function, 

P(xN) is a polynomial in the N integration variables 

XN =/(x1 ,..., xN) and 
LiN) = aiO + aiN - xN, (1.3) 

where the aiN are N vectors of constants, i = l,..., K. The (N - l)-dimensional 
hyperplanes defined in Eq. (1.3) enclose an N-dimensional polytope, 9i?, which is 
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the region of integration in Eq. (1.1). Since 9 must be finite, 9 is bounded, and, 
since W is the intersection of (convex) N-dimensional half-spaces, W is convex [2]. 

Numerical integration techniques for evaluating such integrals were rejected as 
impractical for the degree of accuracy we require. The methods described below are 
thus completely algebraic, with accuracy limited only by computer round-off error. 

In Section II we outline the Bounds Pair method, which is perhaps the most 
straight-forward procedure, and a geometrical approach. The Parts method is 
described in detail in Section III. A recently developed means of avoiding cumber- 
some polynomial manipulation is to be found in Section IV, followed by a discus- 
sion of practical considerations in Section V. The Appendix contains the evaluation 
of a simple integral by all the techniques described herein. 

11. THE BOUNDS PAIR METHOD AND A GEOMETRICAL APPROACH 

The Bounds Pair Method 

After integrating over the first i variables, Eq. (1.1) has the form 

(2-l) 

where the sum includes all the polynomials and associated products of Heaviside 
functions which have arisen from integration over the first i variables. In order to 
integrate over xi+1 for a given q, one now separates out those Heaviside functions 
which define a bound on xi+l . One then integrates over xi+1 using all possible 
pairs of upper and lower bounds on Xi+1 in succession. In principle, for each pair 
of bounds, one obtains a pair of new polynomials and corresponding products of 
Heaviside functions, each involving N - i - 1 variables. That is, each term in the 
sum (2.1) leads to a new sum of the form (2.1), with N - i replaced by N - i - 1. 
Some of the terms in this new sum, which form the origins of new branches in the 
tree structure thus formed, can be eliminated using the testing procedures described 
in Section III. The reader may find it helpful to refer to the Appendix for a sample 
calculation. 

A Geometrical Approach 

A simplex is the simplest possible N-dimensional polytope; its vertices are N + 1 
points, not all of which lie in an (N - I)-plane. The N volume, or content, of a 
simplex is given by [3] 

(2.2) 
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where rj is a vector from one of the vertices of the simplex, taken as the origin, 
to the jth vertex. C. A. Rogers [4] has shown that it is possible to cover a closed 
convex polytope with simplices. An algorithm based on his proof was coded for the 
Rice computer, but the method was discarded as impractical [5]. 

III. INTEGRATION BY PARTS 

General Description 

The result of integrating over i variables in (1.1) is again of the form (2.1). 
Consider 

Yp = j- *.a j- dxN-i P,(xN-“) fi H(L;fy-‘)), 
f=l 

(3.1) 

the pth term in (2.1). In the usual formula 

b b 

udv = uv - 
a I s 

b 

v du 
a 0 (3.2) 

for integration by parts, we let 

u = fi H(L;y) 
j=l 

and 
dv = P,(xN-3 dxt+r 

Using [6] 
dH(ax) = a 6(ax) dx, 

where S(x) is the Dirac delta function, and 

(3.3) 

(3.4) 

(3.5) 

H(x) S(x) = 6(x), 

we find (dropping the subscript p) 

(3.6) 

du = f acmi +1 8(LjN-“) fi H(LjN-*‘) dx,,, , (3.7) 
d-1 f=l 

and 
v = P(xN-i), (3.8) 

in which P is the indefinite integral resulting from integrating P over xi+l. Since 
the polytope is a bounded region of space, 

co 
uv zoo. 

--m (3-9) 
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9, = - 2 ad,i+l 1 .a* / dxN-i-1 dxi+l S(lyy’) fj H(Ly) &x-q. (3.10) 
C=l j=l 

Using the fact that 

(3.11) 

we do the x6+1 integration to obtain 

3 = -t$ sin(at,i+l) J‘ e.9 j dxN+l cl ITI(L$~-~)) pp-i-1) (3.12) 

where we have defined 

sin(x) = 
I 
x/lx I9 xf 0 o 
, x = 0, 

and pt(~~-~--l) and the Ljs--i-l) are the results of setting 

xi+1 = - -& tat., + 2 at. kxk) 
k=i+2 

(3.13) 

(3.14) 

into the corresponding terms in (3.10). 
Hence, the integration over x, yields, in general, several new (IV - l)-dimen- 

sional integrals of the form (l-l), each with its own polynomial and corresponding 
set of Heaviside function bounds. Each of these yields, upon integration over x2 , 
a new set of integrals of the form (1.1). The result is a tree structure with N levels 
and many branches. Some of the branches can be eliminated immediately, reducing 
the complexity of the calculations. 

Thus, the Parts integration procedure involves three basic steps: 

(1) indefinite integration of the current polynomial; 
(2) substitution of the value of the integration variable, obtained from the delta 

functions, into the polynomial and Heaviside functions; and 
(3) testing of the resulting sets of bounds to eliminate redundant ones and to 

determine if the remaining bounds enclose a nonzero volume. 

The procedure in steps (1) and (2) is straightforward; we now describe the testing 
methods. 
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Elimination of Redundant Bounds and Noncontributing Cases 

After integrating over i variables down one branch of the tree, the resulting 
bounds are of the form 

fi fm, + 2 az.A&). 
C-1 k-i+1 

(3.15) 

For the purpose of discussion, and for machine calculations, it is convenient to 
regard each bound as forming a column in the matrix 

A= (3.16) 

%i+l az.i+l - hi, 

al.i+2 

in which the constants ac,o form the last row. 
The tests, in the order in which they are applied, are as follows [7]: 

(1) CBNDS--check for “constant” bounds; 
(2) PARCH-check for parallel bounds; and 

(3) LP -linear programming test. 

The result of substitution into the Heaviside functions in the preceding levels of 
integration may leave one or more bounds with acvK = 0, k = i + I,..., N, hence 
the result is H(Q,~). CBNDS detects these conditions and, if ac,o Z 0, the bound is 
eliminated as being redundant [S]; if a c,. < 0, the entire case is thrown out, since 
the Heaviside function is zero. 

PARCH tests for pairs of bounds which form parallel planes. If a pair of parallel 
planes is detected, there are three possibilities: 

(1) The pair of bounds restricts the range of integration to lie between the two 
planes (Fig. la). Both bounds are then valid, and, indeed, necessary. 

(2) The pair of bounds restricts the range of integration to lie on the same side of 
the parallel planes (Fig. 1 b). The bound which restricts the range of integration the 
most is retained, the other is eliminated as being redundant [9]. 

(3) The bounds restrict the range of integration to regions on opposite sides of 
the parallel planes(Fig. lc). It is obvious that this case can contribute nothing further 
to the integral, and the entire case and the branches it generates are eliminated. 

Thus, CBNDS and PARCH eliminate constant and redundant bounds and some 
cases which can contribute nothing further to the integral. If the current set of 
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FIG. 1. Illustrating the configurations of bounds detected by the parallel bounds and linear 
programming tests. The range of integration lies on the unshaded sides of the planes in each case. 

bounds passes these tests, we apply the linear programming test, which detects 
situations such as in Figs. Id and le, which are not detectable by the other means 
described above. 

The basic problem is: given a set of linear constraints of the form, 

i = I,..., m, (3.17) 

determine whether or not the polytope defined by these constraints has a nonzero 
content. In order to do this, we insert an additional variable, x0 , into each of the 
above constraints to find 

g aiixi + ai.o 3 X0 (3.18) 

or 

,$ (--aij) Xj + X0 < 6.0, i = l,..., m. (3.19) 

Now we maximize x0 (minimize - x0) subject to the constraints (3.19) and note 
that if max(xo) > 0, the content of the polytope defined by (3.18) must be nonzero, 
while if max(x,) < 0, the result of integration over x1 ,..., x, will vanish. 

The problem of maximizing x0 subject to the constraints (3.19) is simply the dual 
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problem to the usual (primal) linear programming problem [lo]. The first feasible 
solution for this extended problem (3.19) is chosen to be 

x0 = mfn @ho>, Xl = -*- = x, = 0. (3.20) 

For our purposes, it is not always necessary to complete the entire maximization 
procedure for x0. The linear programming subroutine [1 I] is exited whenever the 
current value of x0 is positive nonzero (indicating nonzero volume) or when the 
maximum value of x0 is found to be negative. The test described above can be used 
as a test for a feasible solution in the general linear programming problem. 

We have described three basic methods for computing integrals of the form (5.1). 
A discussion of the relative merits of these methods is to be found in Section V. 
We turn now to an investigation of a recently discovered means of avoiding the 
cumbersome and time-consuming polynomial manipulations which arise in the 
application of the Bounds Pair and the Parts integration procedures. 

IV. EXPONENTIAL POLYNOMIALS 

For the present, we let the polynomial P(x”) = 1 in Eq. (1.1) [12]. We then have 

where aN is an N vector of arbitrary, nonzero constants, S is a real number, and the 
LjN), as defined in Eq. (1.3), form the bounding planes of the convex polytope which 
is the bounded region of integration W. Upon integrating over x, in the right side 
of Eq. (4.1), we have, using the Parts integration procedure [see Eq. (3.10)] 

= lii&s) 

where aiN-‘) is the (N - 1) vector of constants which result from setting 

1 
.( 

N 

xl = -G at.0 + 1 
k-2 

into the exponential in Eq. (4.1) for each G in the sum (4.2) and the L:y” are 
obtained similarly. The remaining (N - l)-dimensional integrals in (4.2) are again 
of the form of Eq. (4.1). 
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The result of integration over all N variables in (4.1) is thus 

(4.5) 

where qi”’ is an N vector of constants, qf’ is an N vector of constants, the last 
N - j of which are zero, and c, is a constant depending on the coefficients in the 
Heaviside functions. 

At first glance, it appears that the limit (4.5) does not exist. However, since we 
know 3 to be finite, all divergent terms in a Maclauren series expansion of the 
sum must cancel, provided that none of the (1:‘) * aN = 0. The latter possibility 
can be avoided by proper choice of the initial vector aN [13]. 

In order to evaluate the limit (4.3) we apply the residue theorem, with the simple 
result 

For some applications [ 141, it is desirable to find polynomial expressions for the 
results of integrals of the form (1.1) after integrating over just i < N variables. 
The exponential polynomials can be transformed into the usual polynomial form 
through 

(4.7) 

where the q(3) are defined as above and q(O) is an N vector of the form 

q(O) = (h 3 b, ,***, bi 9 bi+lxi+l ,-**, bNxN)p (4.8) 

where the bi are constants. 
Finally, for a nonconstant polynomial P(xN) in (1. l), such as 

the integral 9 can be computed as [ 151 

(4.9) 

(4.10) 
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Hence 

and the limit S + 0 can be obtained from the residue theorem. 
It is interesting to note that the final answers are independent of the choice of 

aN. This is related to the fact that the choice of the contour Fin Eq. (4.6) is arbitrary, 
so long as r encloses the point S = 0. 

V. PRACTICAL CONSIDERATIONS 

We have described three basic methods of handling the bounds in integrals of 
the form (1.1) and have indicated a means by which one can avoid polynomial 
manipulations in computing such integrals. In this final section we discuss some 
aspects of our experience in computer implementation of these algorithms. 

All three of the basic procedures described above have been coded and run on 
the Rice computer. The geometrical approach was discarded as being totally 
impractical; it was estimated that one of the simpler polytopes of interest contained 
more than one billion simplices [16]. 

The Bounds Pair method was the first to be programmed. Using this method, a 
relatively simple integral, involving nine variables with thirty-five bounding planes, 
required approximately two hundred hours computing time [ 171. The most compli- 
cated case then under consideration was run for about fifty hours with no nonzero 
contributions. The addition of the linear programming test to this package reduced 
the running time for the simple case described above to about fifty hours. 

We next coded the Parts method with the linear programming test, and found the 
normal running time to be reduced by a factor of five. 

Finally, one can sometimes split a complicated cluster into two “loosely 
connected” pieces, obtaining the integral as a function of the variables common 
to both pieces. One then multiplies the resulting polynomials and Heaviside func- 
tions together and integrates over the remaining variables. Hence, for example, 
instead of a single nine-dimensional integral, one computes perhaps five thousand 
three-dimensional integrals. 

The two methods we have actually used, the Bounds Pair and the Parts methods, 
require large and variable memory allocation for the polynomials which arise in 
the intermediate computations. In order to do these calculations, a dynamic storage 
allocation system is necessary. Such a system, called STEX, is available at the Rice 
computer, and is ideally suited for our calculations. Under STEX control, areas 
of storage no longer needed by the program are freed for use in later calculations. 
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When necessary, the free space is compacted into one large block, to facilitate the 
finding of available space. 

In order to eliminate the time wasted in unnecessary polynomial manipulations 
and to make it possible to carry out these calculations on a computer with essen- 
tially fixed storage allocation, one of us (Masinter) has recently coded the Parts 
method with exponential polynomials for the Burroughs 5500 computer at Rice 
University. The recursive nature of the Algol system is well suited to the inherently 
recursive procedures described above. Unfortunately, the difference in speeds of 
the two computers prohibits an exact estimate of the improved efficiency of the 
exponential polynomial procedure, but we feel that running times for complicated 
integrals should be reduced by a factor of five. 

In summary, we have tried several methods of evaluating, algebraically, integrals 
of the form (5.1). The Parts procedure with exponential polynomials is the most 
efficient algorithm we have yet been able to devise. 

APPENDIX 

In order to illustrate the integration techniques described above, we apply each 
of the methods to a very simple example (Fig. 2): 

Y = lrn Jrn dx, dx, H( 1 - xl) H(1 + x1) H( 1 - xz) H(1 + x2) 
-* --m 

x H( 1 - x1 + x2) H(1 + Xl - XJ. (A-1) 

(-1 (1,O) 

(-1, -1) (0, -1) 

FIG. 2. The region of integration for Eq. (A-l). The dashed lines partition the region into 
simplices. 



N-DIMENSI~NAL INTEGRALS WITH POLYTOPE BOUNDS 135 

This example is too simple to permit a comparison of the relative merits of the 
integration techniques. 

The Boun& Pair Method 

The bounds on x1 are 

or 

Thus we have 

- 1 < x1 if x2 < 0 
x2 - 1 < x1 if x2 > 0 

1 > x1 if x2 > 0 
x2 + 1 2 xl if x2 < 0. 

9 = ,‘, dx, [s’, dxl H( -x2) H&2) + s$' dxl H(-x2) 

Since 

+ j:,dx~ Wx2) + s:'I:h fG2) W--x,)]. 
P 2 

H(x) II-X) = 0, 

the integration over x1 yields 

(A-2) 

(A-3) 

(A-4) 

as expected. 

f = j-” (2 + x2) dx, + j: (2 - x2) dx2 = 3, (A-5) 
-1 

Thus the x1 integration yields two contributing branches, one for positive x2 and 
one for negative x2. If this example were a more complicated integral in a higher 
number of dimensions, integration over x2 would yield, in general, several new 
branches for each of the two branches generated by the x1 integral. 

The Geometrical Method 

Reference to Fig. 2 shows that the area of the figure is one half the sum of the 
absolute values of the following determinants (Eq. 2.2): 

(A-6) 
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The general procedure for partitioning an N-dimensional polytope into simplices 
is too lengthy to describe here. 

Integration by Parts 

In this case, Eq. (3.10) becomes 

where 

9 = jm dXl Irn dx, B(x, , x&6(1 - Xl) - 6(1 + XI) 
-co -co 

+ w - Xl + x2) - au + Xl - &)I, (A-7) 

B(x, , x2) = x,H(l - XI) H( 1 + x1) H(1 - x,) H(1 + x2) 

x H(1 - x, + x,) H( 1 + Xl - x2). w9 

The x1 integration yields 

x = lrn dx,[H(O) H(2) H(1 - x2) H(1 + xa H(x& H(2 - XJ 
--m 

+ H(2) H(O) H(1 - x2) H(1 + x2) HO + 52) W--x2) 

+ (1 + x2) @-x2> w2 + $1 Wl - x2) ml + x2) w9 Jw) 

+ (1 - x2) H(2 - xJ H(x,) H(1 - x2) H(1 + xz> H(2) H(O)l. (A-9) 

Application of the CBNDS test removes all Heaviside functions whose arguments 
are constants: 

9 = Irn dxz H(1 - x2) H(1 + x2)[H(x2) H(2 - x2) + H(2 + x2) I-z(-xz) 

,“;1 + xz) W-x,) H(2 + x2) + (1 - xz) H(2 - xz) HWl. (A-10) 

PARCH removes all redundant parallel bounds, with the result 

9 = Srn dx,[H(x,) H(1 - x.2) + H(1 + x2) W-4 
--m 

+ (1 + x,) H(-XJ H(1 + x,) + (1 - x2) Wxz) H(1 - %)I 

zzz ,“, (2 + xz) dx, + J‘: (2 - 4 dxz = 3 (A-l 1) 
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Exponential Polynomials 

Let a2 = (1, ?T). Then Eq. (4.2) becomes 

Y(S) = jm f$ [H(x,) H(1 - x2) eS(*+nzz) - H(1 + x2) H(-x2) eS(-l+nrp) 
--m 

+ H(-x2) H(1 + x2) eS(l+(*+n)Q) - H(x,) H(1 - x2) eSC-1+C1+“)“2)]. 

(A-12) 

The x2 integral yields 

y(s) = & [f (eS(l+~) - es _ e-S + e-W+fl)) 

+ -& (es - e-rS - es, + e-s)], (A-13) 

and application of the residue theorem gives the desired result. 
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